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The hydrologic uncertainty of climate change impacts in two river basins in the Pacific Northwest of US is
investigated. One basin is dominated by snowfall in winter, resulting in snowmelt in spring and early
summer, and the other basin is dominated by rainfall in all seasons. In addition to hydrologic uncertain-
ties, we consider the combined effect of two emission scenarios and eight general circulation models
(GCMs) in our analyses. Latin Hypercube Sampling (LHS) is employed to sample the Precipitation Runoff
Modeling System (PRMS) parameter space and the behavioral parameter sets were obtained according to
a statistical performance measure. The results suggest that the relative impacts of uncertainties from dif-
ferent sources vary between the two basins. It is shown that changes in winter runoff are more affected
by hydrologic model parameter uncertainty in the snow-dominated basin, while they are less influenced
in the rain-dominated basin. The differences in the amount and timing of snowmelt as a result of model
parameter uncertainty contribute to the variations of change in winter runoff in the snowfall-dominated
basin. This result indicates that climate change impact studies for snow-dominated regions require more
cautious interpretation of runoff projections due to considerable uncertainty in estimated hydrologic
model parameters.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

As the Earth’s climate shifts, understanding, quantifying, and
reducing uncertainties in hydrologic climate change impact assess-
ments are critical to the development of adaptive water resources
management plans. Several studies have attempted to quantify the
uncertainty arising from a variety of sources, including future
greenhouse gas (GHG) and aerosol emissions, general circulation
model (GCM) structure and initial conditions (e.g. Tebaldi et al.,
2005; Hawkins and Sutton, 2009), downscaling method (e.g. Wood
et al., 2004; Im et al., 2010; Najafi et al., 2011a), and hydrologic
model structure and parameters (Wilby and Harris, 2006; Jiang
et al., 2007; Prudhomme and Davies, 2008; Kay et al., 2009; Chang
and Jung, 2010; Bae et al., 2011; Najafi et al., 2011b).

Wilby and Harris (2006) investigated the uncertainties associ-
ated with low-flow change, stemming from a combination of emis-
sion scenarios, GCM structures, statistical downscaling methods,
and hydrologic model parameters and structure. Their results indi-
cated that the low flow change was most sensitive to uncertainty in
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the GCM structure and downscaling method, but it was less af-
fected by uncertainties due to hydrological model parameters and
emission scenarios. The Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (AR4) also demonstrated
that climate projection derived from different GCMs is the biggest
source of the uncertainty in projected water resources impacts
(Bates et al., 2008). Kay et al. (2009) conducted an uncertainty
assessment of flood frequency analysis in England and included
two other sources of uncertainty: the GCM initial condition and
downscaling method. As part of the change in flood frequency, their
results indicated that uncertainties due to GCM initial conditions
and RCM structure are more significant if the results from an ex-
treme GCM simulation are excluded. Jung et al. (2011) showed that
the uncertainty associated with urban flooding analysis is highly af-
fected by the GCM structure in the shorter term flood frequency
change (e.g., 2 and 5 year floods), while the uncertainty is domi-
nated by natural variability in the longer term flood frequency
change (above 25 year floods). Moradkhani et al. (2010) developed
several procedural elements to address the effect that climate
change may have on riparian and floodplain-connected areas and
showed the application for a river basin in the Pacific Northwest US.

Jiang et al. (2007) employed six monthly water balance models
to assess hydrologic model structural uncertainty. They showed
that the selection of hydrologic models results in different
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hydrologic climate change impacts. Najafi et al. (2011b) used four
hydrologic models with different levels of complexity to assess cli-
mate change impacts. Their results showed that hydrologic model
selection is more critical in the dry season than in the wet season
in rainfall-dominated regions. Bae et al. (2011) analyzed the effects
of semi-distributed model structures and potential evapotranspi-
ration (PET) methods by using PRMS, Soil and Water Assessment
Tool (SWAT), and Semi-distributed Land Use based Runoff
Processes (SLURP). They reported that the uncertainty from hydro-
logical model and PET is greater in the distant future than in the
near future because of the different sensitivity of PET methods to
temperature change. In agreement with their study, Madadgar
and Moradkhani (in press) reported that more caution is needed
for assessing future change in the risk of low flows and droughts
because of higher uncertainty in the dry season than the wet
season. In addition, Madadgar and Moradkhani (in press) analyzed
the joint behavior of drought characteristics under climate change
using copula multivariate procedure.

Regional hydrological process is closely related to local geolog-
ical characteristics and hydroclimatologic attributes. Tague et al.
(2008) and Chang and Jung (2010) showed that two geologically
different basins, one dominated by High Cascades geology and
the other by Western Cascades geology, had significantly different
changes in summer runoff under identical climate change
conditions. The Western Cascades are composed of low permeabil-
ity volcanic rocks in a highly dissected landscape with steep topog-
raphy, which induces a faster discharge to streamflow; the High
Cascades, by contrast, have young, permeable volcanic rocks, little
dissection, and mild slopes, which creates a deep groundwater sys-
tem (Tague et al., 2008). Similarly, in two separate studies on Eng-
lish basins, Kay et al. (2009) and Prudhomme and Davies (2008)
indicated that major uncertainty sources might vary depending
on the locations of the basins with differing hydroclimatology. In
addition, uncertainties in climate change impact assessment could
vary between basins not just because of basin hydroclimatologic
characteristics but due to better or poorer matches between the
GCM or RCM simulations and conditions in each region and/or
season.

This study aims to compare the uncertainties in climate change
impact assessment in two hydrologically distinct basins. The study
areas are the Clackamas River Basin (CRB) and the Tualatin River
Basin (TRB), sub-basins of the Willamette River Basin in Oregon,
USA that have contrasting hydrologic regimes. The two basins
are near each other and share the same temperate marine climate
characterized by dry summers and wet winters. However, the TRB
is a low-elevation and rain-fed basin, and the CRB is a high-eleva-
tion and snow-fed basin in winter (Laenen and Risley, 1997). These
basins could be differently affected by climate change because
snowmelt change at the CRB is more sensitive to change in both
precipitation and temperature (Graves and Chang, 2007), while
TRB runoff is sensitive to change in precipitation (Praskievicz and
Chang, 2011; Franczyk and Chang, 2009).

We quantify and analyze the uncertainty in future streamflow
by combining the uncertainty in future GHG emission scenarios,
GCM structures, and the hydrologic model parameters. The follow-
ing research questions are addressed and discussed: (1) What are
the relative influences of uncertainty from the above sources
according to streamflow responses to climate change in the two
basins? And, what are the main sources of uncertainties affecting
the changes in streamflow under climate change? (2) How will
the relative uncertainties stemming from diverse sources vary over
time in the two basins? A brief description of two study areas is
presented in Section 2. A detailed description of the GCM simula-
tions and the downscaling method, the hydrological model, and
sampling scheme used in parameter uncertainty analysis is pro-
vided in Section 3. Section 4 elaborates on the results by analyzing
the effects of various sources of uncertainty on projecting the
changes in streamflow at the short and seasonal time scales in
the two basins. A discussion and conclusion are provided in
Sections 5 and 6.
2. Study area and data

The TRB (1847 km2) and the CRB (2529 km2), located west and
east of Portland, Oregon in the USA, are major tributaries to the
Willamette River (see Fig. 1). They provide essential municipal,
industrial, and irrigation water, as well as habitat for fish and other
wildlife, and places for recreation (Laenen and Risley, 1997;
Rounds and Wood, 2001). These basins have a temperate marine
climate characterized by dry summers and wet winters. Approxi-
mately 80% of precipitation in both basins falls from October to
May (Chang, 2007). The inter-annual precipitation variability in
this region is associated with large scale atmospheric circulation
processes, such as El Niño-Southern Oscillation (ENSO) and Pacific
Decadal Oscillation (PDO). Praskievicz and Chang (2009b) demon-
strated that ENSO teleconnections are strongest at the beginning
and end of the rainy season for winter heavy precipitation events,
while the PDO dominates in midwinter.

The two basins lie at different elevations (see Fig. 1). In the low
region below 1000 m, rain-fed and relatively impermeable sub-
strates lead to flow regimes that are more responsive to seasonal
patterns of precipitation (Poff, 1996). Because most areas of the
TRB lie at low elevations, precipitation is in the form of rainfall ex-
cept in the Coast Range Mountains on the far west. The flow regime
in the high elevation region above 1000 m is strongly influenced by
a combination of snow-dominated precipitation, landform, and
volcanic bedrock geology (Tague and Grant, 2004; Chang and Jung,
2010). A study by Laenen and Risley (1997) showed that approxi-
mately 35% of the annual precipitation falls as snow at 1000 m ele-
vation in this region. Young volcanic bedrock geology causes more
constant or moderated flow regime through time (Graves and
Chang, 2007; Tague et al., 2008). Therefore, streamflow in the
CRB has less flooding in winter and greater streamflow during
summer and autumn than in the TRB.

To calibrate the hydrologic model parameters, we collected
hydroclimatologic and topographic data. Daily maximum and min-
imum temperature and precipitation data were obtained from the
National Oceanic and Atmospheric Administration Cooperative Ob-
server Program (NOAA COOP, 2009) for 1972–2007. Fig. 1 shows
the weather stations used in this study. These stations were se-
lected based on the completeness of their records, with less than
5% missing data. The missing values of precipitation and tempera-
ture were interpolated by using the monthly regression method
based on contiguity. Two streamflow gauging station data were
also used to evaluate the performance of the hydrologic model
(USGS NWIS, 2011). Snow water equivalent data from the Natural
Resources Conservation Service Snow Telemetry (NRCS SNOTEL,
2011) were used to verify the accuracy of snowmelt simulation
of the hydrologic model. We chose the Peavine Ridge station which
has an elevation of 1042 m and a data record starting in 1985.
Additionally, soil maps (NRCS, 1986), land cover (Fegeas et al.,
1983), geology data (McFarland, 1983) and topographic data based
on a Digital Elevation Model (DEM) (USGS, 1990) were also used
for modeling purposes.
3. Methodology

3.1. Climate change simulations used in this study

We used 16 (8 GCMs with 2 GHG emission scenarios) down-
scaled climate data scenarios provided by the Climate Impacts



Fig. 1. Clackamas River Basin and Tualatin River Basin.

Table 1
Description of Global Climate Models used in this study (Randall et al., 2007).

Model ID Abbreviation Country Resolution Reference

Atmosphere Ocean

CCSM3 CCS USA 1.4� � 1.4� 1.0� � 1.0� Collins et al. (2006)
CNRM-CM3 CNR France 1.9� � 1.9� 2.0� � 2.0� Terray et al. (1998)
ECHAM5/MPI-OM EH5 Germany 1.9� � 1.9� 1.5� � 1.5� Jungclaus et al. (2006)
ECHO-G ECH Germany/Korea 3.9� � 3.9� 2.8� � 2.8� Min et al. (2005)
IPSL-CM4 IPS France 2.5� � 3.75� 2.0� � 2.0� Marti et al. (2005)
MIROC3.2(hires) MIR Japan 1.1� � 1.1� 0.2� � 0.3� K-1 Developers (2004)
PCM PCM USA 2.8� � 2.8� 0.7� � 1.1� Washington et al. (2000)
UKMO-HadCM3 HAD UK 2.5� � 3.75� 1.25� � 1.25� Gordon et al. (2000)
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Group (CIG) at the University of Washington for integrated assess-
ment of climate change impacts in the Pacific Northwest (see
Table 1). They selected the GCM simulations from the IPCC Fourth
Assessment Report (IPCC, 2007) based on their skill at simulating
the 20th century in the Pacific Northwest (Salathé et al., 2007).
To assess the uncertainty due to emission scenarios, the Special Re-
port on Emission Scenarios (SRES) (IPCC, 2000) A1B and B1 scenar-
ios were selected. Many researchers have used these scenarios
because they present a slightly high GHG emission condition
(CO2 concentration is up to 720 ppm in year 2100) and a low con-
dition (CO2 concentration is up to 550 ppm in year 2100), respec-
tively. The SRES A1B and B1 emission scenarios are similar in
total radiative forcing until the mid-century (up to 2050), but later
in the century, the A1B produces considerably more radiative forc-
ing than the B1 emission scenario.

Although GCMs are useful for comprehensive projections of fu-
ture climate condition, they yield relatively coarse spatial resolu-
tion results of approximately 150–300 km so that they are
unable to resolve significant sub-grid scale features such as topog-
raphy, clouds, and land use (e.g., Im et al., 2010). To account for
these sub-grid processes, many studies have employed various
downscaling methods (e.g. Wood et al., 2004; Najafi et al., 2011a;



Fig. 2. Precipitation Runoff Modeling System (PRMS) schematic.

76 I.-W. Jung et al. / Journal of Hydrology 466–467 (2012) 73–87
Halmstad et al., 2012). Through downscaling, it is possible to rep-
resent the sub-grid scale spatial climate patterns for regional
hydrologic impact assessment under climate change. The CIG used
statistical downscaling, the so-called bias correction and spatial
downscaling (BCSD) method based on quantile mapping (Wood
et al., 2002; Salathé, 2005). They disaggregated the monthly GCM
simulation to daily data at the spatial resolution of 0.0625 degree
(approximately 5–7 km). This method has three steps. The first
step is the spatial downscaling of the climate variables from a
GCM scale grid to a regional scale grid, depending on the scale fac-
tor calculated from monthly gridded observed data. The next step
is bias correction for spatially downscaled data using the historic
station data based on the transfer function between spatially
downscaled GCM simulation and observed data. Finally, the
monthly precipitation and maximum and minimum temperature
data are disaggregated to daily time series using the historic daily
data, modified by the perturbation factor of the future period.
However, this downscaling method has a couple of limitations.
First, it cannot resolve the sequencing of extreme events because
of using monthly GCM simulations. Second, the accuracy of this
method could vary based on density and quality of historical cli-
matologic stations that are used to develop the gridded monthly
observed data (Salathé, 2005). Also it should be noted that the per-
formance of any regression based statistical downscaling method
is heavily dependent upon the predictors used in the procedure.
Najafi et al. (2011b) explained the importance of an objective pro-
cedure to select the most relevant predictors in a statistical down-
scaling method and used an optimal predictor selection procedure,
developed by Moradkhani and Meier (2010), in statistical down-
scaling of precipitation over a basin in the Pacific Northwest of US.

3.2. Precipitation Runoff Modeling System (PRMS)

PRMS was developed to analyze the effect of climate and land
use changes on water resources (Leavesley et al., 1983). It has been
applied in several regional assessment studies to investigate the
impact of climate change on water resources in a variety of cli-
matic and physiographic regions (e.g. Burlando and Rosso, 2002;
Dagnachew et al., 2003; Bae et al., 2008a; Im et al., 2010; Jung
and Chang, 2011). To better understand the wide array of individ-
ual and combined factors that can affect the hydrologic response in
a watershed system, Risley et al. (2011) employed PRMS, driven by
GCM outputs, in 14 watersheds across the US, and conducted a
comparative statistical analysis on the outputs. PRMS has been
successfully used in simulating flow in snow-dominated basins
(e.g. Leavesley et al., 2002; Dressler et al., 2006).

PRMS is a physically-based hydrologic model that uses distrib-
uted-parameters based on Hydrologic Response Units (HRUs)
(Leavesley and Stannard, 1995) (see Fig. 2). Each HRU is assumed
to be homogeneous with respect to its hydrologic response to pre-
cipitation and temperature. HRUs are partitioned based on topo-
graphic attributes, such as elevation, slope, aspect, land use, soil
type, and geology. Each HRU is conceptualized as an intercon-
nected series of reservoirs – interception, snow zone, two soil zone,
subsurface reservoir, and groundwater reservoir – whose com-
bined output produces the total hydrologic response. In this study
HRUs were delineated by reclassifying slope and aspect into six
groups, land use into six groups, geology into five groups, and soil
data into four groups. In total, 208 and 262 HRUs were created for
the CRB and TRB, respectively.

To calculate the spatially distributed precipitation for each HRU
based on observed climate station data, we employed the Precipi-
tation elevation Regressions on Independent Slopes Model (PRISM)
data (OCS, 2011). PRISM, a high quality gridded climate data set
with 800 m resolution, provides average monthly precipitation,
maximum and minimum temperature data for 1971–2000.
Monthly spatial factors for each PRISM gird point were obtained
by comparing monthly mean precipitation value of weather station
and the contiguous PRISM grids. For HRUs, the monthly spatial fac-
tors were estimated by using the area weighted method, and then
these factors were multiplied by the observed precipitation. The
monthly maximum and minimum temperature for HRUs are ob-
tained based on a lapse rate according to elevation (Laenen and
Risley, 1997).

PRMS successively simulates a water balance for each day and
an energy balance for each 12 h, depending on daily precipitation
and maximum and minimum temperatures as model inputs (Hay
et al., 2009). The water balance computation includes evapotrans-
piration, interception, snowmelt, soil moisture accounting, surface
runoff, subsurface runoff, and groundwater runoff (see Fig. 2). En-
ergy balance equations control snowpack accumulation and snow-
melt processes. The parameters related to topographic variables,



Table 2
Description of PRMS model parameters for optimization.

Parameter Description Range Default

adjmix_rain Adjustment factor of rain proportion in mixed rain/snow event 0.0–3.0 1.0
cecn_coef Convection condensation energy coefficient 0.0–20.0 5.0
emis_noppt Emissivity of air on days without precipitation 0.757–1.000 0.757
freeh2o_cap Free-water holding capacity of snowpack 0.01–0.20 0.05
gwflow_coef Ground-water routing coefficient 0.000–1.000 0.015
smidx_coef Coefficient in nonlinear surface runoff contributing area algorithm 0.0001–1.0000 0.01
smidx_exp Exponent in nonlinear surface runoff contribution area algorithm 0.2–0.8 0.3
soil2gw_max Maximum rate of soil water excess moving to ground water 0.0–5.0 0.0
ssrcoef_sq Coefficient to route subsurface storage to streamflow 0.0–1.0 0.1
ssrcoef_lin Coefficient to route subsurface storage to streamflow 0.0–1.0 0.1
ssr2gw_exp Coefficient to route water from subsurface to groundwater 0.0–3.0 1.0
ssr2gw_rate Coefficient to route water from subsurface to groundwater 0.0–1.0 0.1
tmax_allsnow Precipitation assumed snow if HRU maximum temperature is below this value (�C) �23.3 to 4.4 0.0
tmax_allrain Precipitation assumed rain if HRU maximum temperature is above this value (�C) �17.8 to 32.2 4.4

Table 3
Change in annual precipitation and temperature in future 20-year time-slice periods relative to 1960–1989 reference period.

Period Clackamas River Basin Tualatin River Basin

Precipitation Temperature Precipitation Temperature

A1B B1 A1B B1 A1B B1 A1B B1

2010s (2000–2019) �2 (�6 to 6) �1 (�9 to 5) 1 (1–2) 1 (1–2) �2 (�8 to 7) �1 (�9 to 6) 1 (1–2) 1 (1–2)
2020s (2010–2029) �1 (�7 to 4) 0 (�8 to 10) 2 (1–3) 2 (1–3) 0 (�7 to 4) 0 (�8 to 10) 2 (1–2) 2 (1–2)
2030s (2020–2039) 0 (�3 to 4) 1 (�5 to 7) 3 (2–3) 2 (1–3) 1 (�3 to 6) 1 (�6 to 8) 2 (2–3) 2 (1–3)
2040s (2030–2049) 2 (�6 to 7) 0 (�6 to 6) 3 (2–4) 3 (1–3) 3 (�6 to 9) 1 (�7 to 6) 3 (2–4) 3 (2–3)
2050s (2040–2059) 3 (�3 to 10) �1 (�8 to 15) 4 (3–5) 3 (2–4) 4 (�1 to 12) �1 (�9 to 16) 4 (2–5) 3 (2–4)
2060s (2050–2069) 2 (�7 to 14) 0 (�11 to 15) 5 (3–6) 3 (2–4) 2 (�6 to 17) 1 (�10 to 16) 4 (3–5) 3 (2–4)
2070s (2060–2079) 2 (�7 to 13) 0 (�12 to 9) 5 (4–6) 4 (2 to 5) 2 (�6 to 16) 1 (�12 to 10) 5 (4–6) 4 (2–5)
2080s (2070–2089) 3 (�6 to 12) 1 (�6 to 7) 6 (5–7) 4 (3–5) 4 (�7 to 14) 1 (�5 to 7) 5 (4–7) 4 (3–5)
2090s (2080–2099) 5 (�5 to 17) 3 (�5 to 13) 6 (5–8) 5 (3–6) 6 (�7 to 20) 4 (�5 to 14) 6 (4–87) 4 (3–6)

Fig. 3. Concept of estimation of maximum variation derived by each uncertainty sources such as hydrological model parameter sets, GCMs, and GHG emission scenarios.
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Fig. 4. Distribution of estimated parameters of PRMS model.
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such as area, slope, elevation, soil type and soil moisture capacity,
ratio of impervious area, and seasonal vegetation cover density
according to land cover are directly estimated from the measurable
basin characteristics using GIS (Hay and Clark, 2003; Bae et al.,
2008b; Im et al., 2010). However, the other parameters determin-
ing the timing and amount of runoff need to be calibrated (see
Table 2). There are 20 parameters related to snow modeling in
PRMS. This study used the values recommended by Leavesley
et al. (1983) except tmax_allsnow.

The type of precipitation (i.e., rain or snow) can be determined
by two parameters, tmax_allsnow and tmax_allrain as the thresh-
olds of the maximum temperature. If maximum temperature of
each HRU is above the tmax_allsnow and below the tmax_allrain,
precipitation is assumed to be mixed with snow and adjusted by



Fig. 5. Observed streamflow (filled circle) and ranges of simulated streamflow with estimated parameters.

Fig. 6. Performance of simulations of snow water equivalent using estimated parameters at the Peavine Ridge (21D14S) SNOTEL sites in Clackamas River Basin.
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adjmix_rain. The snow process in the PRMS model includes initia-
tion, accumulation, and depletion of a snowpack as described by
Obled and Rosse (1977). Snowmelt occurs when the temperature
of snowpack, calculated by energy balance (cecn_coef, emis_noppt),
reaches isothermal conditions at 0 �C. Snowmelt is first used to sat-
isfy the freewater holding capacity of the snowpack (freeh2o_cap)
and then becomes infiltration or surface runoff. The surface runoff
is computed using a nonlinear equation (smidx_coef, smidx_exp),
depending on antecedent soil moisture and rainfall amount. Infil-
trated soil water first satisfies the groundwater reservoir based
on a recharge rate (soil2gw_max). When the percolating moisture
exceeds the soil2gw_max, the excess soil water goes to the subsur-
face reservoir. Excess moisture in the subsurface reservoir either
percolates to a ground-water reservoir (ssr2gw_exp, ssr2gw_rate)
or flows to stream (ssrcoef_sq, ssrcoef_lin). Groundwater is simu-
lated conceptually by a linear reservoir characterized by parameter
gwflow_coef. More detailed description of model conceptualization
and the governing equations is provided in Leavesley et al. (1983)
and Leavesley and Stannard (1995).

For potential evapotranspiration calculation, the Hamon meth-
od was used (Hamon, 1961) because it is simple and the needed
temperature data were readily available. This method is well-sui-
ted to a large range of surface types with comparatively little bias
(e.g. Federer et al., 1996; Vörösmarty et al., 1998; Kleinen and



Fig. 7. Change in summer and winter precipitation (two upper panels) and temperature (two lower panels) in future period relative to the reference period 1960–1989.
Symbols indicate each GCM simulation for CRB (C, diamond) and TRB (T, circle). Purple and blue colors represent A1B and B1 GHG emission scenarios respectively. Black
horizontal bar represents mean value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Petschel-Held, 2007). However, Shaw and Riha (2011) argued the
temperature-based PET method such as the Hamon method could
exaggerate PET in a warming climate.

3.3. Assessment of uncertainty

To evaluate the effects of uncertainty from a variety of sources
in the two basins, eight GCM simulations driven by two emission
scenarios (A1B and B1) for the full period 1960–2099 were fed to
the PRMS model as inputs. The seasonal mean values in climate
and runoff were calculated based on the transient series for nine
standard time-slices (see Table 3) and compared with the reference
period of 1960–1989. To address the model parameter uncertainty,
14 PRMS parameters (see Table 2) were carefully selected as sug-
gested in the literature (e.g. Hay et al., 2006, 2009; Bae et al.,
2008b; Im et al., 2010). These studies demonstrated that PRMS
could closely reproduce observed flows when sensitive parameters
were calibrated.

This study examined the relative influences of uncertainty
sources on seasonal (winter: December, January, and February
and summer: June, July, and August) and extreme (10th (Q10)
and 90th (Q90) percentile) runoff changes by comparing the max-
imum variations according to each uncertainty source (see Fig. 3).
For instance, if we had employed only two GCMs, two GHG emis-
sion scenarios, and two hydrologic parameter sets for the climate
change impact analysis as shown in Fig. 3, eight combinations
would have been generated. Using such combinations we first cal-
culated differences between the two results that are derived from
different hydrologic parameter sets where other forcing conditions
are identical. Finally, we determined the lowest and highest runoff



Fig. 8. Change in summer and winter runoff of CRB (C) and TRB (T) in future period relative to 1960–1989 reference period. Purple and blue colors represent A1B and B1 GHG
emission scenarios respectively. Box and whisker plot shows median value (bar) in the box, Q1 is 25th percentile value, Q3 is 75th percentile value, Q3–Q1 is interquartile
range (IQR), upper whisker is the highest datum within 1.5 � IQR of the higher quartile, lower whisker is the lowest datum within 1.5 � IQR of the lower quartile. Outliers are
symbols shown by ‘‘x’’. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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changes that give the greatest difference between them. The same
procedure was applied to determine the greatest difference associ-
ated with the other uncertainty sources.

3.4. Latin Hypercube Sampling (LHS) of the model parameters

The Monte Carlo methods are often used to explore the param-
eter space of hydrologic models to obtain the behavioral parameter
sets. To initialize such a process, and to uniformly generate the
parameter sets from feasible ranges (see Table 2 for parameter
ranges), the LHS method (McKay et al., 1979) can be used.

LHS was developed to generate well-distributed plausible col-
lections of parameter sets in multi-dimensional space (Iman
et al., 1981). LHS is commonly used to reduce the number of runs
necessary for a Monte Carlo approach to achieve a reasonably
accurate random distribution (Davey, 2008). Davey (2008) com-
pared the representation capacity of LHS and Monte Carlo ap-
proach for one- and two-variable function in the magnetic field
optimization. The results showed that the samples from LHS clo-
sely represented the actual function. This indicates that LHS effec-
tively reduces the number of simulations necessary to sufficiently
sample a population of multiple variables. To generate the PRMS
parameter sets used in this study, LHS was undertaken with
20,000 runs.

3.5. Obtaining and testing PRMS parameter sets

Randomly generated parameter sets from plausible ranges
(Table 2) were used to simulate daily runoff using observed daily
precipitation and maximum and minimum temperature for the
period of 1973–1983 in the CRB and the period of 1973–2006 in
the TRB. The first 2 years of the PRMS simulations are used for
model spin-up and were not considered for further analysis. The
Nash–Sutcliffe (1970) non-dimensional model efficiency criterion,
NS, defined by Eq. (1), was used as the objective function.
NS ¼ 1�
Pn

i¼1ðOi � SiÞ2
Pn

i¼1ðOi � OiÞ2
ð1Þ

where Oi and Si are respectively the ith observed and simulated
streamflow, and Oi is the observed mean streamflow.

In this study we assumed that a NS value above 0.7 indicates a
satisfactory fit between observed and simulated hydrographs (see
Freer et al., 1996; Wilby, 2005; Choi and Beven, 2007). A total of
389 parameter sets for the CRB and 926 parameter sets for the
TRB were obtained as behavioral parameters. To compare the dif-
fering parameter uncertainties of the two basins, 300 best-per-
forming parameter sets with the highest NS values were chosen
for each basin. Fig. 4 shows distributions of the selected 300
parameter sets in the two basins. Although the distributions of
most of the parameters are similar, significant differences in distri-
butional properties of soil2gw_max and tmax_allsnow parameters
are seen in the two basins. soil2gw_max parameter for the TRB
tends toward higher values but the parameter values of the CRB
show a relatively uniform distribution. For tmax_allsnow parame-
ter, the lower uncertainty is seen in the CRB as compared with
the TRB. Fig. 5 displays daily observed flow and range of simulated
flow using the selected parameters. This range well covers ob-
served low and high flows indicating that PRMS with the selected
parameters would reasonably simulate the observed streamflow.
The observed SWE from Peavine Ridge SNOTEL station plotted
against simulated SWE using the selected 300 behavioral parame-
ters sets for CRB (see Fig. 6). The NS for SWE estimation ranges
from 0.47 to 0.72 between observed and simulated values.
4. Results

4.1. Changes in seasonal precipitation and temperature

Fig. 7 shows the changes in seasonal precipitation and temper-
ature for the nine time-slices relative to the reference period of



Fig. 9. Change in summer and winter runoff of CRB (C) and TRB (T) for 2050s and 2090s based on each eight GCMs and two emission scenarios. Purple and blue colors
represent A1B and B1 GHG emission scenarios respectively. Box and whisker plot shows median value (bar) in the box, Q1 is 25th percentile value, Q3 is 75th percentile value,
Q3–Q1 is interquartile range (IQR), upper whisker is the highest datum within 1.5 � IQR of the higher quartile, lower whisker is the lowest datum within 1.5 � IQR of the
lower quartile. Outliers are symbols shown by ‘‘x’’. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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1960–1989. This figure shows that the precipitation and tempera-
ture changes according to GCMs and GHG emission scenarios for
the two basins differ by the time-slices as well as the summer
and winter seasons. However, no substantial differences in precip-
itation and temperature changes are seen between the two basins.
As shown in this figure, the ranges of seasonal climate changes by
GCMs are relatively larger than those of the GHG emission scenar-
ios in both basins. Similar findings have been reported in other
studies (e.g., Wilby and Harris, 2006; Bates et al., 2008; Kay
et al., 2009; Prudhomme and Davies, 2008; Chang and Jung,
2010; Bae et al., 2011). Fig. 7 also shows that the seasonal changes
of precipitation and temperature are higher in summer than in
winter season. The ranges of changes in temperature increases
with time, but the changes in precipitation do not reveal a consid-
erable trend. Table 3 shows ensemble mean and ranges for change
in annual precipitation and temperature for the nine time-slices
relative to the reference period. Although the change in annual
precipitation is low compared to that in seasonal precipitation, it
shows that the uncertainty ranges from GCMs are relatively larger
than those of GHG emission scenarios or basins.
4.2. Uncertainty of seasonal runoff change

Fig. 8 displays the box–whisker plot of the changes in the sum-
mer and winter runoff. The uncertainty ranges of summer runoff



Fig. 10. Maximum range of change in summer and winter runoff according to hydrologic parameters, GHG emission scenarios, and GCMs.

Fig. 11. Maximum range of change in high flow (Q10) and low flow (Q90) according to hydrologic parameters, GHG emission scenarios, and GCMs.
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change are relatively larger than those in winter. This could be
attributed to the seasonal variation of runoff in this region. Know-
ing that the summer is the driest season, a small change in the
amount of precipitation would result in a substantial relative
change in summer runoff. Wilby et al. (2006) showed that UK ba-
sins have similar seasonal variation in runoff uncertainty; summer
flows are projected to decline with high uncertainty, while annual
flows are projected to increase only slightly. Im et al. (2010) had
similar findings in a Korean basin, although with contrasting sea-
sonal variation of runoff, as dry winter and wet summer where
the uncertainty in change in the absolute amount of runoff is larger
in winter than summer.

The seasonal runoff changes of both basins show that the uncer-
tainty stemming from GCMs is greater than that due to GHG emis-
sion scenarios. The predictive uncertainty range varies over time,
particularly for summer runoff changes, however, the uncertainty
range of winter runoff changes for the second half of the 21st cen-
tury (after the 2050s) is wider than those in the first half of the 21st
century (before the 2050s) (see Fig. 8). Hawkins and Sutton (2009)
explained that the uncertainty in regional climate predictions var-
ies with time and across spatial and temporal scales. Our study also
confirms that the uncertainty in runoff change varies spatially and
temporally.

Fig. 9 displays seasonal runoff change for the two periods of
2050s and 2090s with respect to uncertainty sources including
eight GCMs, two emission scenarios, and 300 hydrologic parame-
ters. An interesting result is that the winter runoff changes due
to the hydrologic parameters exhibit a remarkably different range
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between the two basins. The range of winter runoff change in the
TRB is much smaller than in the CRB. This result indicates that win-
ter runoff change in the rain-dominated TRB is less affected by
hydrologic parameters uncertainty. However, the uncertainty
ranges in summer runoff change are similar in the two basins, ex-
cept for CNR, EH5, and MIR in 2090s.

Fig. 10 shows the relative contribution of uncertainty from var-
ious sources, which is estimated by the method described in
Section 3.3. To obtain the maximum range of hydrologic parameter
uncertainty, we found the lowest and highest runoff changes over
the 300 parameter sets under the same GCM and the same emis-
sion scenario. Of the 16 lowest/highest pairs (8 GCMs � 2 emission
scenarios), we picked the pair with the greatest difference between
them, and plotted it in Fig. 10. For GHG emission scenario uncer-
tainty, we obtained the lowest and highest runoff changes over
the two emission scenarios among 2400 pairs (8 GCMs � 300
parameter set). Also, GCM uncertainty was calculated through
the same process except using 600 pairs (2 emission scenar-
ios � 300 parameter sets). The analysis of uncertainty in the winter
runoff suggests that the GCM uncertainty is the highest, however,
the relative contribution of emission scenario and hydrologic
parameter uncertainties vary in the time-slices. It appears that
the parameter uncertainty in the CRB is larger than that of the
emission scenarios for the 2030s, 2040s, 2070s, 2080s, and 2090s
while the parameter uncertainty in the TRB is lower than the emis-
sion scenario uncertainty, except 2020s. The analysis of maximum
uncertainty of summer runoff change, however, shows more com-
plex behavior. In general, relative change in summer runoff as a re-
sult of uncertainty in hydrologic parameters is considerably higher
than the corresponding change in winter runoff. In some cases
(e.g., 2020s, 2030s, 2040s, and 2070s) in the TRB, the uncertainty
associated with hydrologic parameters is the highest. This result
can be explained to the small volume of summer runoff in this re-
gion; Wilby et al. (2006) and Bae et al. (2011) noted that more cau-
tion is needed for interpreting change in future low flow condition
in the climate impact study.
Fig. 12. Ratio of winter snowmelt to winter runoff (S/R) of CRB (C) and TRB (T) for referen
box, Q1 is 25th percentile value, Q3 is 75th percentile value, Q3–Q1 is interquartile rang
lower whisker is the lowest datum within 1.5 � IQR of the lower quartile. Outliers are s
4.3. Uncertainty of extreme flow change

Maximum changes in low and high flows for future time-slices
were examined in Fig. 11. The ensemble mean of change in the Q10
high flow slightly increases in the range of +5% to +10% in both ba-
sins, while those changes in the Q90 low flow are in the range of
�60% to �10% (not shown). The change in the Q10high flow is
mainly affected by the GCM uncertainty rather than GHG emission
scenarios and hydrologic parameter uncertainties in both basins,
although hydrologic uncertainty in the CRB appears to be larger
than that of the TRB. Hence, the Q10 uncertainty of GHG emission
scenarios notably increases after the 2050s. This could be attrib-
uted to A1B and B1 emission scenarios showing similar levels of
GHG emissions up to 2050s but different levels toward the end
of 21st century. The change in 90 low flow (Q90) at the TRB reveals
substantial variation associated with hydrologic parameter uncer-
tainty. This could be associated with the fact that the TRB’s stream-
flow volume is lower than the CRB’s during the dry season. The 90%
low flow mainly occurs in summer season. Therefore, the large var-
iation can be explained by the difference between low summer and
high winter flow volumes. As shown in Fig. 11, hydrologic param-
eter uncertainty has higher impact on the change in low flow (Q90)
than on the change in high flow (Q10).

5. Discussion

5.1. Uncertainties in seasonal and extreme flow projections

The detailed analyses of this study focus on the uncertainty in
the impact of climate change on seasonal mean and extreme flows
for two distinct basins. It is demonstrated that hydrological uncer-
tainty varies significantly between the two basins given their cli-
mate regimes. The changes in runoff over different time-slices
are highly variable by season and basin as a result of uncertainty
in GCM, emission scenario, and hydrologic model parameter
identification. Most notably, change in winter runoff in the
ce period and future 9 periods. Box and whisker plot shows median value (bar) in the
e (IQR), upper whisker is the highest datum within 1.5 � IQR of the higher quartile,
ymbols shown by ‘‘x’’.



Fig. 13. Relationship of ratio of winter snowmelt to winter runoff (S/R) for reference period and change in winter runoff for 2050s and 2090s periods, here, the individual
markers indicate the PRMS runs with 300 parameter sets.
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snow-dominated basin (the CRB) is more dependent on the hydro-
logic parameters; they have less influence in the rainfall-domi-
nated basin (the TRB). This result indicates that climate change
impact assessment in snowfall-dominated regions may require
more caution in runoff projection interpretation and more reliabil-
ity in hydrologic model selection and parameter estimation (Mor-
adkhani and Sorooshian, 2008; Najafi et al., 2011b).

Estimated hydrological model parameters may depend on cali-
bration conditions (Merz et al., 2011; Peel and Blöschl, 2011). This
study used different calibration periods in CRB (1973–1983) and
TRB (1973–2006) given the availability of observed flow data.
However, the distributions of calibrated parameters in both re-
gions are similar, except soil2gw_max and tmax_allsnow (Fig. 4).
In general, given the importance of uncertainty arising from hydro-
logic model parameters, caution needs to be taken by identifying
sensitive parameters for calibration.

Downscaling methods and hydrologic model structures are also
important uncertainty sources. Previous studies (Wilby and
Wigley, 1997; Wood et al., 2004; Fowler et al., 2007; Im et al.,
2010; Najafi et al., 2011a) report that different downscaling meth-
ods—statistical downscaling and dynamical downscaling—can cre-
ate an additional source of uncertainty. Different hydrologic
models that have different model assumptions could introduce
yet another source of uncertainty. However, dealing with uncer-
tainties associated with downscaling methods and hydrologic
model structure selection is beyond the scope of this study and
for further detail we refer the reader to studies conducted by Najafi
et al. (2011a,b).
5.2. Cause of uncertainty in winter flow change

If the quantification and propagation of uncertainty sources are
possible through further research or modeling improvement, the
uncertainty associated with climate change impacts will be poten-
tially reduced (IPCC, 2007). To investigate the cause of larger
uncertainty from the hydrologic parameter in the CRB (winter flow
in Fig. 9), a ratio of winter snowmelt to winter runoff (S/R) was
estimated (see Fig. 12). The S/R represents the sensitivity of using
hydrologic model parameter sets to precipitation and temperature
changes on winter snowmelt. Lower S/R value can be less sensitive
to temperature change than higher S/R value under the same pre-
cipitation change. Therefore, higher S/R value as a result of hydro-
logic model parameter uncertainty can induce higher change in the
winter flow (see Fig. 13). Fig. 13 shows the significant relationship
between the S/R value and winter runoff change; the Pearson cor-
relation coefficients range from 0.79 to 0.90 for A1B and from 0.70
to 0.90 for B1 in the 2090s with 0.01 significance level. Also, the S/R
values above 40% show steeper change in runoff than those below
40% S/R values. This result indicates that different sensitivity of
hydrologic model parameter sets to climate change can cause
hydrologic model uncertainty in snow-dominated regions such as
CRB. Consequently, improving the accuracy of a snow process in
hydrologic modeling could be of paramount importance in reduc-
ing the hydrologic uncertainty in snow-dominated regions. This
will result in more reliable decisions on adaptation and mitigation
strategies in the face of many uncertainties about future hydrologic
projections.
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6. Summary and conclusions

In this study, we examined various sources of uncertainty in
hydrologic climate change impact assessment for both rain-domi-
nated and snow-dominated basins. This study investigated the rel-
ative contribution of uncertainty sources, including GCM, GHG
emission scenario, and hydrologic parameters. Eight GCMs were
used to represent GCM model uncertainty and two GHG emission
scenarios were used to represent the future range of projected
GHG emission. The uncertainty from PRMS model parameters
was represented by selecting behavioral parameters using Latin
Hypercube Sampling (LHS), used to sample the hydrologic model
parameters. The important results drawn from this study are sum-
marized as follows.

(1) Hydrologically distinct river basins may have different
ranges of uncertainty in climate impact study. Especially,
changes in winter runoff are more affected by hydrologic
parameter uncertainty in a snow-dominated basin, while
these changes are less pronounced in a rain-dominated
basin.

(2) The differences of uncertainty between the two basins stem
from snow modeling. The results suggest that climate
change impact assessment in snow-dominated regions
would require more caution in interpreting future runoff
projections because of the uncertainty of modeling
snowmelt.

(3) The uncertainty in runoff change varies with time and
between the basins, although some of this is due to the rel-
atively higher uncertainty ranges of temperature and precip-
itation changes at the end of the 21st century. Because the
ranges of GHG emission scenarios used in this study do
not cover the full IPCC SRES range, further studies seem nec-
essary for a more complete assessment of uncertainty
related to emission scenarios.

There are several sources of uncertainty to be considered in
hydrologic climate change impact assessment. This study did not
discuss other sources of uncertainties, including downscaling
method Najafi et al. (2011a), hydrologic model structure Najafi
et al. (2011b), and GCM initial conditions. While including these
sources may shift the relative contributions of the uncertainty
sources, GCM structural uncertainty is still likely to be the biggest
source of uncertainty as reviewed by Praskievicz and Chang
(2009a). The direction and magnitude of future precipitation and
temperature changes substantially vary among different GCMs,
particularly at a regional scale. Further studies are underway to
quantify the relative contribution of all uncertainty sources to run-
off changes.
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